Synarmacrinus Cobbani, A New Crinoid from the Minturn Formation (Middle Pennsylvanian) of Colorado

WAYNE M. ITANO
WILLIAM D. BATEMAN

1. Manuscript submitted August 2000; Accepted January 2001
2. 1995 Dartmouth Avenue, Boulder, Colorado 80305, E-mail: <wayne.itano@aya.yale.edu>
3. Museum Associate, Department of Earth Sciences, Denver Museum of Nature and Science, Denver, Colorado 80205

ABSTRACT

Synarmacrinus cobbani, new species, is reported from the Minturn Formation (Pennsylvanian, late Atokan), McCoy, Eagle County, Colorado. This is the second species of Synarmacrinus and the eighth cromyocrinid reported from the Minturn Formation. The holotype is a complete cup, which is medium globe-shaped, has a shallow basal concavity, and contains two anal plates. The prismatic is large and quadrangular; the secundanal is narrow, extends above the cup, and makes a narrow contact with the CD basal. S. cobbani is distinguished from all other species of Synarmacrinus by the surface ornament, which consists of numerous, widely-spaced nodes, sometimes connected by ridges, and by other details of the cup shape and cup plates.

INTRODUCTION

We report a new species of cromyocrinid, Synarmacrinus cobbani, the holotype of which is a complete cup found by one of us (W. D. B.) in a marine silstone bed in the Minturn Formation, near the town of McCoy, Eagle County, Colorado (Fig. 1). The crinoid fauna of the Minturn Formation (late Atokan to early Desmoinesian) has been the subject of previous studies (Strimple and Moore, 1973; Webster and Houck, 1998) and is the most diverse known from the Pennsylvanian of Colorado. In all, seven cromyocrinids, one protocrinid, two pirasocrinids, one erilocrinid, and one flexible crinoid were known from whole or partial cups prior to the present study. In addition, four taxa based on columns are known from the Minturn Formation. Most of the Minturn crinoid species are endemic.

The record of Pennsylvanian crinoids elsewhere in Colorado is rather sparse. One cromyocrinid found at McCoy has also been found in the Belden Formation (late Atokan) near Dotsero, Eagle County (Webster and Houck, 1998). Two cromyocrinids and a flexible crinoid were reported from the Pinkerton Trail Limestone (late Atokan or early Desmoinesian) near Molas Lake in southwestern Colorado by Strimple and Miller (1971). Two erilocrinids, one cromyocrinid, and one pirasocrinid were reported from the Desmoinesian Madera Formation (Minturn Formation according to some authors), Huerfano Park by Tischler (1963) and Strimple, (1976).

SYSTEMATIC PALEONTOLOGY

Synarmacrinus Cobbani New Species

INTRODUCTION

71

STRATIGRAPHIC SETTING

71

SYSTEMATIC PALEONTOLOGY

73

Synarmacrinus Cobbani New Species

73

STRATIGRAPHIC SETTING

The Pennsylvanian sediments in the vicinity of McCoy were originally named the McCoy Formation by Roth and Skinner (1930). Stevens (1958) recognized the equivalence of these beds with those in the vicinity of the town of Minturn, Colorado, approximately 45 km to the southeast, which were named the Minturn Formation by Tweto (1949). Stevens subdivided the Minturn Formation at McCoy into 19 numbered units, which include both marine and nonmarine rocks. Some of these units were further subdivided by Houck (1993, 1997) (e.g., units 3a, 3b, 3c). Houck correlated several of the marine units of the...
Minturn Formation at McCoy with the fusulinid biozones of Ross and Ross (1987). The cup was found within unit 3b of Houck (1993, 1997), which correlates with the biozone of *Fusulinella famula*, *Fusulinella iowensis*, and *Fusulinella iowensis keyi* (late Atokan).

The locality where the holotype of *Synarmocrinus cobbani* was found is in prominent cliffs north of the Colorado River and Eagle County Road 301, about 4 km west of the road's intersection with Colorado State Highway 131. Maroon and purple sandstones, conglomerates, shales, and limestones in the lower part of the cliffs comprise most of unit 3. They are overlaid by an erosional unconformity, which has removed unit 4. In the middle is unit 5, a prominent band of gray shale and tan sandstone. Above are maroon and purple rocks, which comprise units 6 through 9. The stratigraphic column shown in Figure 2 is based on section 87/16a of Houck (1993), which was measured approximately 70 m to the north of the locality at which the cup was found. It depicts the portion of unit 3 exposed in the outcrop, including the position at which the cup was found, in a marine siltstone immediately (within 1 meter) below a fossiliferous marine limestone bed. The limestone bed can be traced continuously from one locality to the other. The stratigraphy is essentially the same at these two localities.

During the Middle Pennsylvanian Period, McCoy was at the eastern margin of an intermontane basin, the Central

Figure 1. Middle Pennsylvanian paleogeographic map of Colorado, showing areas of uplift around the Central Colorado Trough. Crinoid localities are marked with solid dots. (After Mallory, 1972; Devoto, 1980; Webster and Houck, 1998.)

Figure 2. Partial stratigraphic section of the Minturn Formation showing the horizon, indicated by the arrow, at which the holotype of *Synarmocrinus cobbani* new species, DMNH 22970, was found. The diagram is based on measured section 87/16a of Houck (1993), which is about 70 m to the north of the holotype locality.
Colorado Trough (Fig. 1) (Mallory, 1972; DeVoto, 1980). This was a period of high tectonic activity, which resulted in a generally high rate of clastic influx to the shallow-marine environment in which the McCoy crinoids lived. The paleoecology and depositional environment of the crinoid-bearing beds has been discussed in detail by Webster and Houck (1998). They found the McCoy crinoids to have lived in two environments: 1) on the flanks of phylloid algal mounds or 2) in patches on abandoned delta lobes and splay deposits on the gently sloping substrate. The environment of the type locality for *Synarmacrinus cobbani* was of the second kind. More specifically, the crinoids were growing on wave-shore fan deposits associated with a drowned barrier island (Houck, 1993, 1997). Erisocrinids, pirasocrinids, and particularly cromycocrinids dominate the McCoy crinoid fauna. The discovery here of another cromycocrinid reinforces this observation. These families of crinoids are interpreted to have had dense filtration fans and were found in relatively high-energy, nearshore environments having moderately high clastic influx in the stable-platform “Terrigenous Facies Belt” of the Midcontinent of North America. In contrast, crinoids with more open filtration fans were associated in the Midcontinent with farther offshore, lower-energy (i.e., clay-rich) environments with lower clastic influx. It seems likely that the level of clastic influx in the environment of the McCoy crinoids was similar to that of the nearshore environments in the Midcontinent and that this was an important controlling factor in determining the crinoid faunas. Webster and Houck (1998) also noted that the Minturn crinoid fauna is made up exclusively of relatively large forms and that the diversity is low compared to that of other Pennsylvanian faunas. Both low diversity and large size have been observed to be characteristic of nearshore, as opposed to offshore, Pennsylvanian crinoid faunas in the Midcontinent. Since the cup of *Synarmacrinus cobbani* is relatively large and the crinoid faunal diversity remains low, even with the addition of another species, none of the general observations of Webster and Houck (1998) are changed.

SYSTEMATIC PALEONTOLOGY

Class CRINOIDEA Miller, 1821
Subclass INADUNATA Wachsmuth and Springer, 1885
Family CROMYOCRINIDAE Bather, 1890
Genus SYNarmacrinus Lane, 1964

Type species. — *Synarmacrinus brachiatus* Lane, 1964.

Other species. — *S. adornatus* Strimple and Watkins, 1969; *S. carrizoensis* Webster and Lane, 1970; *S. depressus* Washburn, 1968; *S. itatani* (Strimple, 1949); *S. molasensis* (Strimple and Miller, 1971); *S. papulosus* (Moore and Plummer, 1938).

Diagnosis. — Cup medium truncate bowl-shaped, widest at apices of basals with shallow basal concavity; infrabasals subhorizontal or slightly downflared; radial facets subhorizontal; cup plates with coarse nodes or ridges; sutures impressed; 2 anals; 10 uniserial arms; column round (Webster 1981).

Occurrence. — Pennsylvanian (Morrowan-Missourian); U.S.A.

Discussion. — The species list includes all those listed by Webster (1981) in his revision of the Cromycocrinidae, except for *S. fundundus* Strimple, 1966, and *S. oklabomensis* (Moore and Plummer, 1938). *S. fundundus* has been transferred to *Metacromycrinus* (Strimple, 1975), and *S. oklabomensis* has been transferred to *Aglaocrinus* (Strimple, 1982). They are excluded from *Synarmacrinus* because they possess biserial arms.

SYNarmacrinus COBBANI new species

Figures 3.1-3.5

Diagnosis. — Cup medium globe-shaped, with basal concavity. Two anals; primateal large, quadrangular; secundanal narrow, extending above cup, making narrow contact with CD basal. Ornament consisting of numerous, widely-spaced nodes, sometimes connected by ridges, but more often isolated.

Description. — Cup medium globe-shaped, 38 mm wide, 15 mm high, with basal concavity, sutures deeply incised. Width greatest at approximately two-thirds cup height. Five small infrabasals, subhorizontal, confined to basal concavity. Ratio of diameter of infrabasal circle to diameter of cup 0.25. Five large basals, pentagonal, proximal ends forming sides of basal concavity, extending distally about halfway up lateral walls of cup, strongly convex longitudinally, moderately convex transversely, AB basal 19.5 mm wide and 13 mm long, CD basal narrower, 12.8 mm from vertex adjacent to BC basal and primateal to vertex adjacent to DE basal and D radial, 12.5 mm long. Five large radials, pentagonal, proximal ends not reaching basal plane, incurving distally, A radial 19 mm wide and 11 mm long. Primateal contacting C radial, BC and CD basals, secundanal. Secundanal contacting primateal, D radial, CD basal. Ornament consisting of numerous small nodes, sometimes connected by ridges. Separations between nodes usually greater than diameters of nodes.

Etymology. — Named after William A. Cobban of the U. S. Geological Survey, in honor of his contributions to invertebrate paleontology, particularly of the ammonites of the western interior of North America.
Material examined. — The holotype, a complete cup (DMNH 22970). Minturn Formation, unit 3b (late Atokan) Sec. 2, T2S, R84W, Eagle County, Colorado. Found by William Bateman. Isolated radial plate (DMNH 22971). Minturn Formation, unit 3b (late Atokan) Sec. 3, T2S, R84W, Eagle County, Colorado, near locality 86/8 of Houck (1993), approximately 700 m to the west of the locality at which the cup was found. Found by Wayne Itano. Isolated radial plate (DMNH 10311). Minturn Formation, unit 3a (late Atokan) Sec. 3, T2S, R83W, Eagle County, Colorado. Found by Karen Houck. All material deposited at the Denver Museum of Nature and Science (formerly known as the Denver Museum of Natural History), together with more detailed locality information.

Occurrence. — Minturn Formation, units 3a and 3b (late Atokan) McCoy, Eagle County, Colorado. Unit 3b, in which the cup (DMNH 22970) and the isolated plate (DMNH 22971) were found, has been dated to the fusulinid biozone of Fusulinella famula, Fusulinella iowensis, and Fusulinella iowensis keyi by Houck (1997).

Discussion. — Isolated cup plates with large nodes from the Minturn Formation were referred to Synarmocrinus

Figure 3. 1-5, Synarmocrinus cobbanii new species, 1-4, Basal, oral, posterior, and B ray views, holotype, DMNH 22970, x1.5; 5, radial plate, DMNH 22971, x2.5. 6, Synarmocrinus molaseensis (Strimple and Miller, 1971), radial plate, DMNH 22972, x2.5. Damage to the EA basal of the holotype seen in basal view (1) was caused by a digging implement. Arrow in oral view of cup (2) indicates uniserial arm plate.
Synarmacrenus Cobbbri, A New Crinoid from the Minturn Formation (Middle Pennsylvanian) of Colorado

molasensis by Webster and Houck (1998). Figure 3.6 shows a radial plate (DMNH 22972) of this type, which we assign to S. molasensis, found by William Bateman at the same locality and horizon as the holotype of S. cobbbi (DMNH 22970). Figure 3.5 shows for comparison a radial plate (DMNH 22971) which we assign to S. cobbbi. S. molasensis is distinguished from S. cobbbi by having fewer and larger nodes. The isolated radial plate (DMNH 10311) shown in Figure 4.14 of Webster and Houck (1998) and referred by them to S. molasensis should be assigned to S. cobbbi. However, the other plates, Figures. 4.15-19 (DMNH 10312, 10313, 10316, 10317, 10318) were correctly assigned to S. molasensis. The possibility that more than a single species was represented in this collection was noted by Webster and Houck (1998). The arms of S. cobbbi are not known. However, a uniserial arm plate was found associated with the holotype (Fig. 3.2). If this is a true association, then the assignment to Synarmacrenus is nearly certain.

All other species of Synarmacrenus are distinguished from S. cobbbi by one or more features. S. adornatus has ornament consisting of irregular nodes and ridges and has a wider infrabasal circllet. S. carrizoensis has ornament consisting of coarse, irregular nodes and short ridges and has upflaring infrabasals. S. depressus has coarse, irregular ornament and a wider infrabasal circllet. S. iutani has a cup with more erect sides and radial facets with narrower outer attachment areas. The plates are smoother than those of S. cobbbi, but this may be the result of abrasion. S. papulosus has ornament consisting of closely spaced irregular nodes and short ridges, a wider infrabasal circllet, and a more globular cup. S. brachiatus has ornament consisting of strong, irregular ridges and a wider infrabasal circllet. In addition, the holotypes of S. adornatus, S. carrizoensis, and S. brachiatus differ from that of S. cobbbi in having secundanals that do not contact the CD basal. However, the variability of the anal plates is not known and so may not be a reliable diagnostic feature. Since the arms of S. cobbbi are not known with certainty to be uniserial, it is possible that reassignment to another genus will prove necessary if in the future it is found to have biserial arms. However, this should not change its status as a new species. Among crinoids having biserial arms, S. cobbbi is closest to AGLACOCRINUS oklahomensis (Moore and Plummer, 1998) and METACROMOCRINUS fundundus (Strimple, 1966). A. oklahomensis has coarser ornament and radial facets with narrower outer attachment areas. M. fundundus has more closely spaced nodes, a less pronounced basal concavity, and a more globular cup.

ACKNOWLEDGMENTS

We thank G. D. Webster (Washington State University) for help in identification of the specimen and for reading the manuscript. We thank A. R. Palmer (Institute of Cambrian Studies) for help with the photography. We thank K. Houck (Eastern Kentucky University) for information on stratigraphy of the Minturn Formation, especially the measured section reproduced in Figure 2, and for the map used in Figure 1. We thank K. Johnson (Denver Museum of Nature and Science) for advice and encouragement.

REFERENCES

Strimple, H.L., 1975, Middle Pennsylvanian (Atokan) crinoids from Oklahoma and Missouri: The University of Kansas Paleontological Contributions, paper 76, p. 1-30.

75 The Rocky Mountain Association of Geologists
Strimple, H.L., and J.F. Miller, 1971, Pennsylvanian crinoids from the Pinkerton Trail Limestone, Molas Lake, Colorado: The University of Kansas Paleontological Contributions, paper 56, pt. 9, p. 35-40.
Webster, G.D., 1981, New crinoids from the Naco Formation (Middle Pennsylvanian) of Arizona and a revision of the Family Cromocrinidae: Journal of Paleontology, v. 55, p. 1176-1199.

THE AUTHORS

WAYNE M. ITANO
Wayne graduated from Yale University with a B. S. in physics in 1973. Since graduating from Harvard University with a physics Ph. D. in 1979, he has worked as a physicist for the National Institute of Standards and Technology in Boulder, Colorado. He completed the Denver Museum of Natural History Certification Program in Paleontology in 1992.

WILLIAM D. BATEMAN
William graduated from Macalester College in St. Paul, Minnesota with a B. A. in Economic Theory in 1963. He is now retired after a career in insurance and investments. He completed the Denver Museum of Natural History Certification Program in Paleontology in 1991. He is currently a Departmental Associate in the Department of Earth and Space Sciences in the Denver Museum of Natural History.